CFD isn’t just for planes, trains, and automobiles anymore. Industrial equipment, musical instruments, sporting goods – anything around or through which a fluid flows can be optimized through simulation. And accurate simulations require a mesh generator like Pointwise with the flexibility to handle the non-traditional.
You can generate structured multi-block, unstructured, hybrid, and overset meshes for viscous simulations with precise control over point placement and clustering to get the resolution you need. At the same time, Pointwise’s core meshing methods produce cells of high quality to ensure convergence and accuracy in your CFD solution.
Using Pointwise’s Glyph scripting language, you can automate most or all of the mesh generation process by writing macros and templates. And the software’s plug-in SDK gives you the ability to write a mesh exporter customized to your CFD solver. Between Glyph and plug-ins, you can customize the entire meshing process from geometry model import to flow solver export.
In this webinar, we will examine the tools and the framework that allowed over 100 designs to be explored, resulting in a higher speed, lower drag big wave surfboard design.
Students at KTH Royal Institute of Technology in Sweden investigated the performance of a pick-and-place machine using CFD. Pointwise was used to perform a grid refinement study for a static simulation where the nozzle of the machine as well as the distance to the component varied. Additionally, an overset mesh was generated for a 1-DOF dynamic simulation.
Maura Gallarotti, a master's student at KTH Royal Institute of Technology in Sweden, used Pointwise Glyph scripting to quickly generate families of candidate heat exchanger designs and to perform parametric studies by changing the dimensions of several geometrical parameters to assess the effect of these parameters on cooling efficiency. With no experience using Pointwise and having never heard about Tcl/Tk or Glyph she was able to write a script to completely automate the grid generation process in less than a week.
While the folks at Pointwise appreciate the beauty and utility of grids, usually the computational meshes produced by our software are used as an intermediate step in a customer’s engineering analysis process and not as the final goal of the project. However, Branch Technology, with its novel freeform 3-D printing techniques actually turns these meshes into physical structures that can be used as building elements or as seen here, works of art.
Last month several Pointwise engineers attended the 24th International Meshing Roundtable (IMR) held in Austin, Texas. We brought two grids generated for two benchmark geometries provided by the IMR steering committee. The grids were made by Carolyn Woeber, Travis Carrigan, and myself. We were pleased to hear that the grids were recognized both for their technical merit and striking visuals - they had won the Meshing Contest award.
Researchers at Toyohashi University of Technology in Japan have used detailed DNS calculations of the flow through a recorder to better understand its sound generation mechanisms and give guidance for future instrument designs.
Pointwise president John Chawner recently participated in a panel discussion on the future of mesh generation at the AIAA Science and Technology Forum 2015. Here is his summary of the topics covered and a glimpse of the meshing challenges we face.
Three meshes (multi-block structured and unstructured with hexahedral and prismatic boundary layers) were generated for a generic volute and simulations were performed in the Code Leo CFD solver. Meshing time, solution time, and solution accuracy are compared.
Beginning with a faceted geometry model of an arterial aneurysm, this webinar demonstrates how to generate a multi-block structured grid with O-H topology quickly and with high quality.
Using a generic, baffled tank stirred by a Rushton turbine you will see how to use Pointwise to generate high-quality unstructured meshes suitable for steady-state moving reference frame calculations in OpenFOAM.
LBE is a eutectic mixture consisting of 45 percent lead and 55 percent bismuth. It is foreseen as a possible coolant for Generation IV nuclear reactor systems. The most interesting properties of LBE in comparison with lead and water are presented in Table 1.
Pointwise can easily manage and organize complex assemblies so you can focus on meshing a single component at a time. This allows engineers to rapidly generate high quality hybrid grids while maintaining the connectivity between adjacent components.
Natural gas accounts for more than 23 percent of the world's energy production. Although it is not used in airplane engines because of its large storage volume, it has become widespread in industrial gas turbines and is the fuel of choice for many to plug the “energy gap” within the United Kingdom.
Combustion Research and Flow Technology (CRAFT Tech) has been using CRUNCH CFD® and Pointwise to design and evaluate pump systems for our customers. Pointwise has proven to be a robust and powerful tool for generating high-quality unstructured meshes.
Many aerospace-related applications exist that require surfaces to move within a given region. This can include bodies moving relative to each other, as happens during a store separation, or surfaces actually changing shape, which is what happens with ablation and aeroelasticity.
At Syracuse University, a mixed group of both graduate and undergraduate students had the opportunity to participate in a project involving an innovative new wing design. Overseen by Prof. Thong Dang, the team sought to analyze this new design to determine its practicality and effectiveness.
At the Chair for Computational Analysis for Technical Systems (CATS) at the RWTH Aachen University, a part of the group is working within the Priority Program 1273 “Colloidal Process Engineering” of the German Research Foundation (DFG).
The reduction of the drag force on all types and shapes of objects has historically been, and remains, a major focus of aerodynamicists and fluid mechanics researchers everywhere. Aircraft, automobiles, rockets, boats, and a multitude of other devices and components suffer from the ill effects of viscous and form drag.
Customers have written many articles about how they apply Pointwise for their real applications. We have written many articles describing benefits about the features in Pointwise. However, these articles rarely describe the full meshing process in any detail.
The simulation of airflow over a golf club shows the CFD process from geometry creation through solution post-processing for two hybrid meshes: one made exclusively in Pointwise and one combining Pointwise with mesh generation tools developed at UTC SimCenter.
This two-part video is aimed at providing guidance in creating a CFD ready viscous multiblock structured mesh for a single passage of a high stagger angle axial rotor geometry.
This two-part video is aimed at providing guidance in creating a CFD ready viscous multiblock structured mesh for a single passage of a high stagger angle axial rotor geometry.
Pointwise reduces the time needed for high-fidelity CFD simulation of turbomachinery. In this webinar, we demonstrate the techniques used to create a multiple-block, structured mesh for the DARPA HIREP Axial Pump.